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Summary: Treatment of nitroalkene I with t-butyl hydroperoxide and m-chloroperbenzoic acid gave the SIG?’ 
product and 2,3-anhy&o derivative, respectively, in high yields. The former product is proved fo be usefur 
intermediate for introduction of nucleophiles at C-4. 

To our best knowledge, there is no sport for preparation of nitm sugars having a reactive peroxy 

group. In general the reactions of niWenes with peroxi& such as t-butyl hydroperoxide give the nitro 

epoxide for its facile cleavage of the O-O bond.1 Assuming that the reaction between a hydmperoxide and 

nitroalkene having a gocd leaving group at the p-position affords the SN~’ product, we have performed the 

reaction of 1 with r-bury1 hydroperoxide and indeed obtained the intending peroxy product 4 in high yield. 

Reaction of 1 with m-chloroperbenzoic acid (MCPBA) in the presence of 1.1 equimolsr amount of 1M 

NaOH afforded the nitroepoxide 2 2 in 83% yield. The manno configuration of 2 is suggested by JQ value 

( 0 Hz)3 and confirmed by its identification with an authentic sample prepared by debenzylidenation and 

subsequent acetylation of 4,6-o-benzylidene derivative 3.3~~ When 1 was similarly treated with 

t-butyl hydropexoxide, the peroxide 4 was obtained in 91% yield, after purification with short column 

chromatography. Thus isolated peroxide 4 2 was unexpectedly stable and could be kept at least one week at 20” 

and its structure was determined by elemental analysis, lR, and lH-NMR spectroscopy. 

Although introduction of nucleophiis at the C-2 position had been canied out extensively> similar 

reactions at the C-4 position of 3-nitm sugars are rather scarce. Since the peroxide 4 has potential utility for 

introducing nucleophiles at C-4,4 was subjected to the reaction with sodium borohydtide to give the 4deoxy 

derivative 5 2 in 97% yield. The attack of a hydride ion from the upper side was proved by the use of sodium 

borodeuteride. On exposun to p-tolmethiol, 4 smoothly converted to the Qmercapto derivative 7 2 in 95 % 

yield Morpholine similarly led to the Cmotpholino derivative 8 2 in 82% yield. The rulo-conftgurations of 

these products were determined on the basis of 112 (ca. 0 Hz) and J4.5 values (3.0 - 5.0 Hz), and confirmed 

chemically in the case of 6 by treatment with lithium aluminum deuteride. W&Cleavage of the oxirane ring 

gave the 3-ulose, which then reduced to the alcohols 9 and 10.4 Equatorial and axial protons of C-2 and C-4 

were deuterati in these 3-epimeric products 9 and 10. 

The pcxoxydation not only gave synthetically useful intennediatc 4 as mentioned above, but also 

afforded a useful information about the reaction mechanism. It is not established whether the SN~’ reaction of 

a-nitroalkene with a leaving group at the p’-position proceeds in a concerted mechanism or stepwise, i.e. via a 

nitronate ion.‘j The peroxide 4 is the SN~’ product, but the nitro epoxidc 2 is not. It is most likely that a 

nucleuphile adds the C-2 position, giving a nitronate ion, the anion of which attacks the per~nzoyl group for 

its facile cleavage of the O-O bond, while it expels the acetoxyl group at C-4 as a leaving group instead of a 
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relatively strong O-O bond of t-butylpcroxid¢ moiety. Thus it may conclutlc that the SN2' product 4 also 

generated by the stcpwis¢ mechanism rather than conceded one. 

As expected1 from the stcpwisc mechanism, treatment of 4 with MCPBA afforded the 3,4-anhydro 

derivative II 2 in 98 % yield. 
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